

Upfront usage of single agent anti-PD1 antibodies versus combined BRAF and MEK inhibitors in metastatic or unresectable BRAF V600 mutated melanoma

- A EUMelaReg real world evidence study -

L. Bastholt¹, L. Kandolf², N. Asher³, E. Espinosa⁴, I. Gavrilova⁵, J. Mangana⁶, P. Asciertoˀ, H. Gogas⁶, P. Rutkowski⁶, M. Weichenthal¹⁰, for the EUMelaReg study group† nt of Oncology, OUH - Odense University Hospital, Odense, Denmark, ⁷Military Medical Center, Ramat Gan, Israel, ⁴Oncology department, Hospital Universitario La Paz, Madrid, Spain, ⁵Oncodermatology, Bulgarian National Cancer Registry, Sofia, Bulgaria, ⁶Dermatologie, spital Zürich - Klinik für Dermatologie, Zurich, Switzerland, Melanoma, Cancer Immunotherapy & Developmental Therapeutics, Istituto Nazionale Tumori -IRCCS - Fondazione Pascale, Napoli, Italy, 8 First Department of Medicine, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece, 9 Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research

Background

Treatment of BRAF V600 mutated metastatic melanoma patients with either BRAF and MEK inhibitors (BRAF/MEKi) or immune-checkpoint inhibitors (ICI) with anti-PD1 antibodies or anti-PD1/CTLA4 combinations, has improved the outcome of patients significantly compared to former treatment standards. Until recently, there was only sparse evidence on the question of whether any of the approved BRAF/MEKi or anti-PD1 schedules would offer significant advantage over others in patients with BRAF mutated melanoma as upfront treatment for treatment-naïve metastatic disease, and most guidelines did not recommend one of the two strategies to be preferred.

While some evidence is available for advantage of combined anti-PD1/CTLA4 antibody treatment compared to BRAF/MEKi, the role of single agent anti-PD1 antibody treatment is less clear.

The current study analysed patients with metastatic or nonresectable BRAF V600 mutated melanoma, who received either BRAF/MEKi combination, or single agent anti-PD1 antibody treatment in the first-line setting. The aim of this study was to understand the clinical characteristics associated with treatment allocation in first-line unresectable or metastatic BRAF V600-mutated melanoma besides combined ICI with Ipi/Nivo in order to evaluate which treatment choice could be paramount for patient's ineligible for Ipi/Nivo.

Methods

Institute of Oncology, Warsaw, Poland, ¹⁰DermatologyDepartment, Christian-Albrechts-University Kiel, Kiel, Germany

A total of 1,861 patients with BRAF V600 mutated unresectable metastatic melanoma who received for first-line either BRAF/MEKi (n=1,150) or single anti-PD1 ICI (n=711) were evaluated based on data from the EUMelaReg, which is a real-world registry for the treatment of advanced and high-risk melanoma at the European level.

Patients were excluded if they had received previous BRAF/MEKi or anti-PD1 adjuvant treatment or their follow-up after the start of first-line treatment was less than 12 months, except for patients with PFS2 event, including death, within the first 12 months

Primary outcomes of interest were (1) overall survival (OS), (2) time interval until progression after secondline therapy (PFS2) and (3) time to next treatment (TTNT).

In addition, latent class analysis (LCA) was used to identify complex patient profiles and their relation to treatment outcomes. For LCA the study populations data was split into two cohorts. The exploration cohort consisted of those sources that were particularly rich for all potentially important covariates and had a low rate of missing or unknown values for those covariates and potential indicator variables. This cohort consisted of data from 1,065 patients. The remaining data sources were used as a validation cohort and consisted of 793 cases.

Results

Adjusted survival analysis revealed that patients treated with anti-PD1 only had a significant higher overall survival with a median OS (95% CI) of 38.1 (30.4-48.3) months and median PFS2 (95% CI) of 21.7 (19-27.4) months compared to the BRAF/MEKi group with 16.7 (15.5-18.6) months and 12.3 (11.6-13.5) months (p<0.0001 for both), respectively (Table 3, Figure 1A, C).

Median TTNT (95% CI) did not differ significantly between both treatments with 13.7 (10.6-16.8) months for anti-PD1 and 11.8 (11.0-12.8) months for BRAF/MEKi (Table 3, Figure 1D).

Latent class analysis revealed 4 distinct classes of patient profiles showing differential outcomes of anti-PD1 compared to BRAF/MEKi. The advantage of anti-PD1 compared to BRAF/MEKi was most prominent in patients with very high tumor load, symptomatic M1c/M1d disease, and many metastatic sites, and in young patients with average tumor load, while elderly patients with average tumor load, but higher rate of comorbidities showed no significant difference. The same was true for patients with low tumor burden, regardless of age (Figure 2 and 3). The distribution of classes and the respective survival outcomes could generally be confirmed in the validation cohort (data not shown).

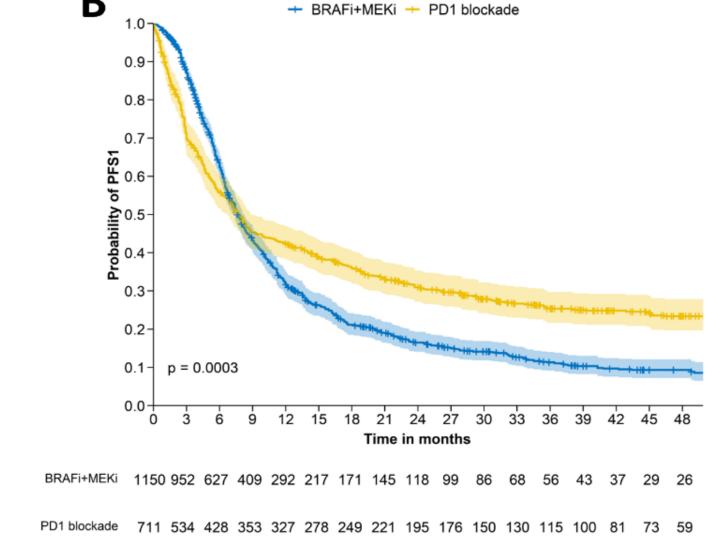
Table 1: Baseline Characteristics BRAF/MEKi Anti-PD1 Total P-value (N=1,150) (N=711)(N=1,861)292 (41.1%) 768 (41.3%) Female 674 (58.6%) 419 (58.9%) 1,093 (58.7%) Age at treatment start (years) 385 (54.1%) 1,179 (63.4%) 794 (69.0%) 222 (31.2%) 489 (26.3%) 267 (23.2%) 104 (14.6%) 193 (10.4%) **ECOG** score 867 (46.6%) < 0.001 185 (26.0%) 522 (28.0%) 36 (5.1%) 244 (13.1%) 208 (18.1%) 148 (12.9%) 228 (12.3%) 80 (11.3%) Missing/Unknown **Charlson comorbidity score** 239 (20.8%) 98 (13.8%) 337 (18.1%) < 0.001 251 (21.8%) 367 (19.7%) 116 (16.3%) 386 (20.7%) 250 (21.7%) 136 (19.1%) 410 (35.7%) 361 (50.8%) 771 (41.4%) ≥ 3 Ipi/Nivo available at therapy start 1,390 (74.7%) 847 (73.7%) 543 (76.4%) 221 (11.9%) 139 (12.1%) 82 (11.5%) 164 (14.3%) 86 (12.1%) 250 (13.4%)

N, number of patients; BRAF/MEKi, therapy with BRAF/MEK inhibitors; anti-PD1: PD-1, Programmed cell death protein 1; ECOG, Eastern Cooperative Oncology Group; Ipi/Nivo, Ipilimumab/nivolumab.

Table 2: Tumor Characteristics BRAF/MEKi Anti-PD1 Total P-value (N=1,150)(N=1,861)**AJCC Stage** 125 (6.7%) 65 (5.7%) Stage III, non-resectable 111 (9.7%) 155 (21.8%) 266 (14.3%) Stage IV M1a 150 (21.1%) 267 (14.3%) Stage IV M1b 750 (40.3%) 261 (36.7%) Stage IV M1c 489 (42.5%) 453 (24.3%) Stage IV M1d 85 (12.0%) LDH at baseline 440 (38.3%) 863 (46.4%) 423 (59.5%) Normal 571 (30.7%) 187 (26.3%) Elevated < 2.5 x ULN 174 (9.3%) ≥ 2.5 x ULN 21 (3.0%) 253 (13.6%) Missing 173 (15.0%) 80 (11.3%) Number of metastatic sites 495 (26.6%) 252 (35.4%) < 0.001 225 (31.6%) 497 (26.7%) 272 (23.7%) 869 (46.7%) ≥ 3 635 (55.2%) 234 (32.9%) Type of melanoma 1575 (84.6%) 957 (83.2%) Cutaneous 286 (15.4%) Adjuvant therapy prior to 1L* 134 (7.2%) Radiotherapy prior to 1L 161 (14.0%)

N, number of patients; BRAF/MEKi, therapy with BRAF/MEK inhibitors; anti-PD1, PD-1, Programmed cell death protein 1; AJCC, American Joint Committee on Cancer; LDH, Lactate dehydrogenase; MUP, melanoma with unknown primary. *Adjuvant pre-treatments with interferon.

Table 3: Treatment outcomes								
	BRAF/MEKi (N=1,150)	Anti-PD1 (N=711)	Total (N=1,861)	P-value				
Best response								
CR	145 (12.6%)	165 (23.2%)	310 (16.7%)	< 0.0001				
PR	535 (46.5%)	167 (23.5%)	702 (37.7%)					
SD	234 (20.3%)	135 (19.0%)	369 (19.8%)					
PD	167 (14.5%)	208 (29.3%)	375 (20.2%)					
Unknown	69 (6.0%)	36 (5.1%)	105 (5.6%)					
ORR	680 (59.1%)	332 (46.7%)	1,012 (54.4%)	< 0.0001				
DCR	914 (79.5%)	467 (65.7%)	1,381 (74.2%)	< 0.0001				
Survival (95% CI)*								
Median OS	16.7 (15.5-18.6)	38.1 (30.4-48.3)	23.8 (21.1-26.8)	< 0.0001				
Median PFS1	7.7 (7.3-8.2)	7.8 (6.7-8.8)	7.7 (7.2-8.3)	0.0003				
Median PFS2	12.3 (11.6-13.5)	21.7 (19-27.4)	16.1 (14.6-17.5)	< 0.0001				
Median TTNT	11.8 (11.0-12.8)	13.7 (10.6-16.8)	12.7 (11.6-13.7)	0.024				
Median FU	38.5 (35-40.6)	41.8 (39.9-44.7)	40.3 (38.5-41.8)	0.002				


progression-free survival after second line of treatment; TTNT, time to next treatment; FU, follow-up;

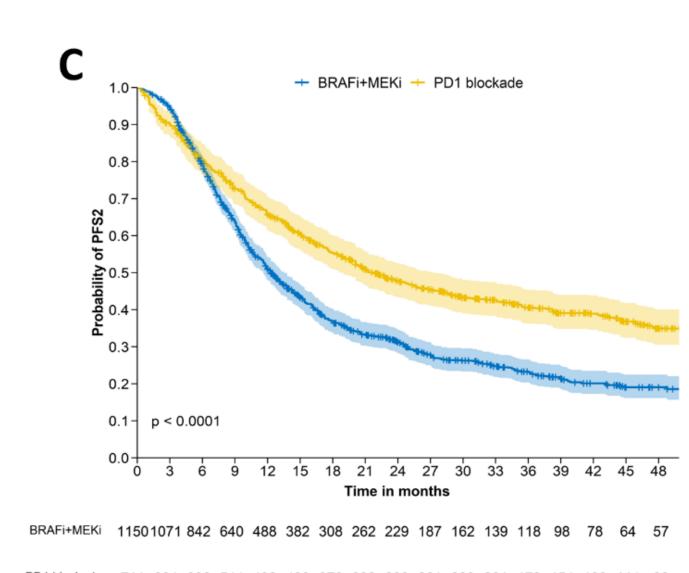

*Adjusted with inverse propensity score weighting.

Figure 1: Adjusted survival analysis

Kaplan-Meier survival estimates adjusted by propensity score weighting for overall survival (A), progression PFS2 (C), and time to next treatment (D). 95 percent confidence intervals of the estimate are denoted by colour shading.

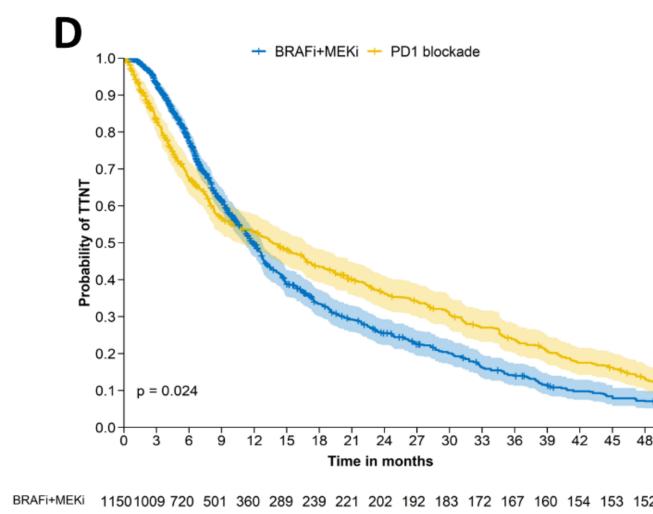
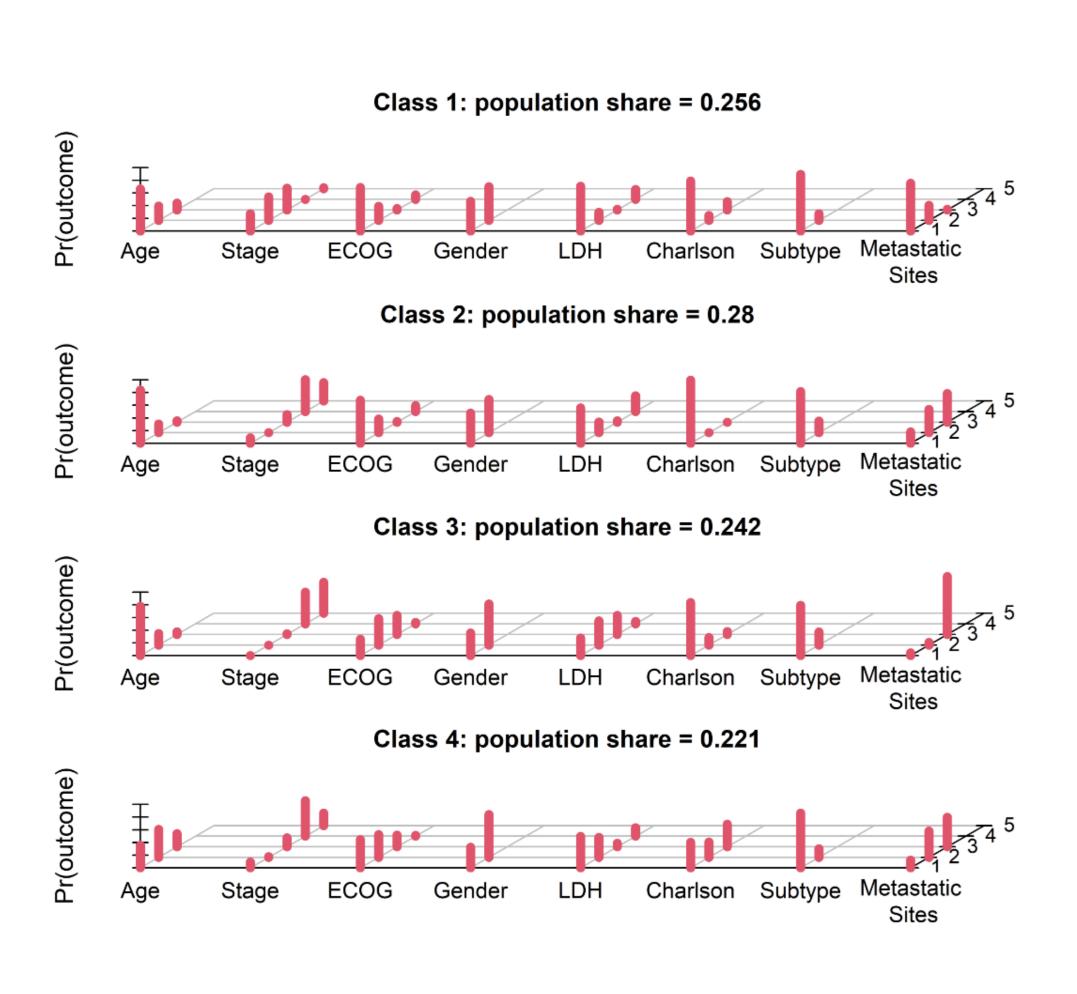
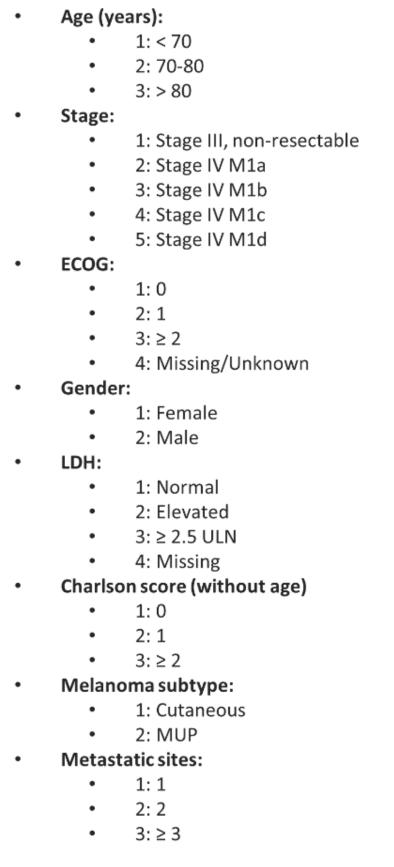


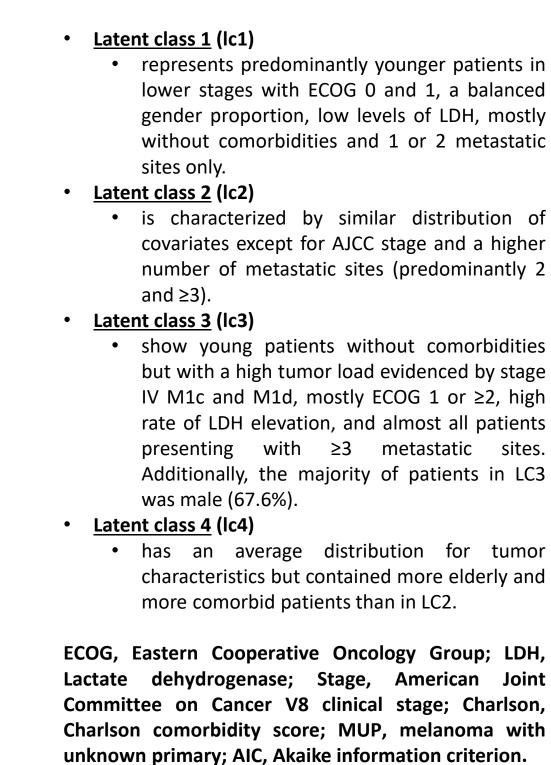
Figure 3: Real-world OS with inverse propensity score weighting for 4 latent classes

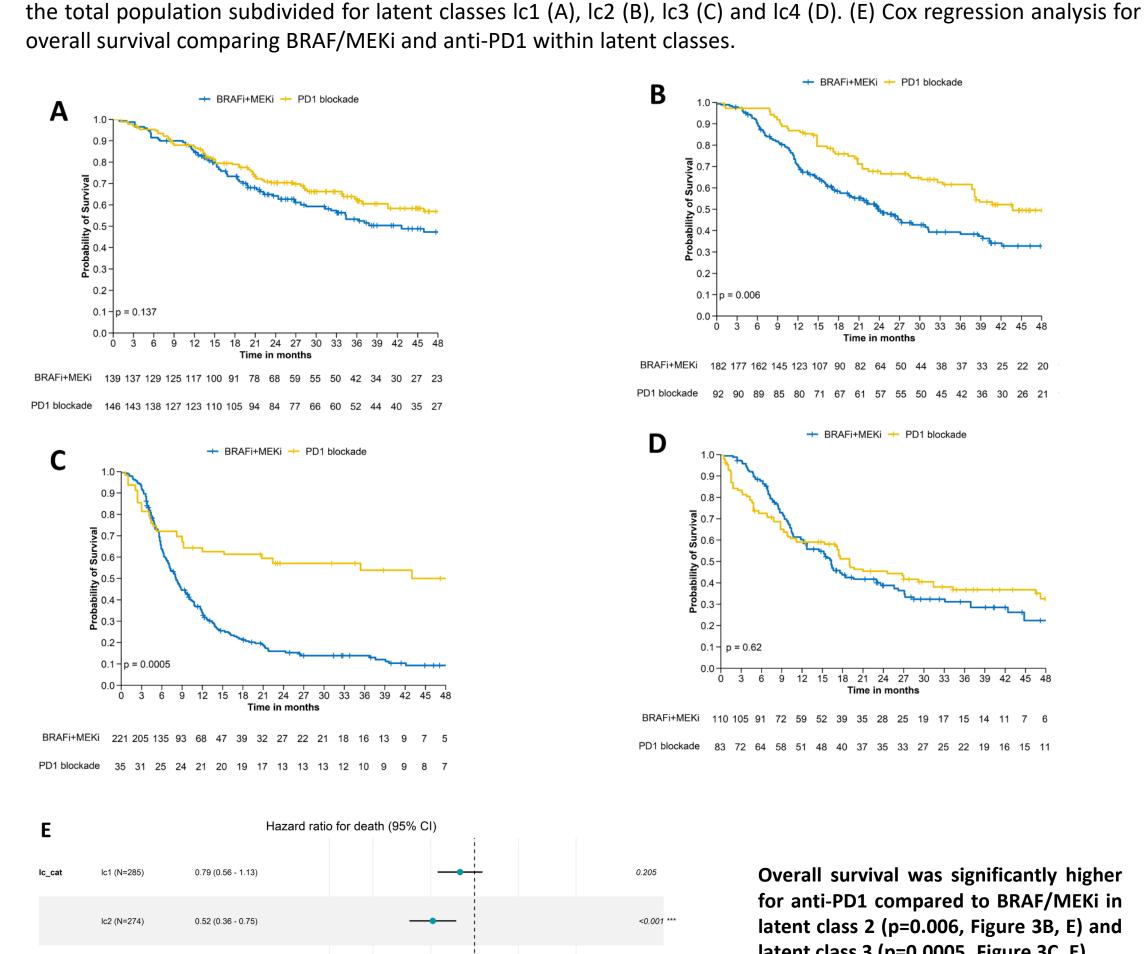
Kaplan-Meier curves were obtained from propensity score adjusted estimates for overall survival as described for

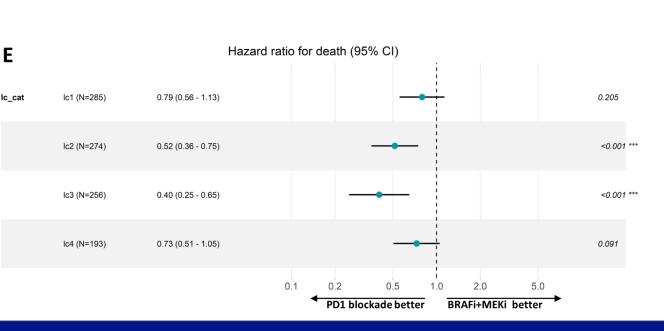
OS, PFS1 and PFS2 estimates adjusted by inverse propensity score weighting were significantly higher in anti-PD1 treated patients compared to BRAF/MEKi (Figure 1A, 1B, 1C).


Time to next treatment was comparable between both groups (Figure 1D, p=0.024). During the first few months, hazards appear worse for


anti-PD1, resulting in crossing over of the Kaplan-Meier curves within the first 12 months for all outcomes. ORR showed a significantly higher percentage of 59.1


for BRAF/MEKi as compared to 46.7% with anti-PD1 (p<0.0001). Likewise, the overall disease control rate was in favour of BRAF/MEKi (79.5% vs. 65.7%;


The median follow-up time was significantly shorter in BRAF/MEKi treated patients than in anti-PD1 (Table 3).


Supervised clustering of patient groups defined by relevant indicator variables (age, AJCC stage, ECOG, gender, LDH, Charlson score (without age), melanoma subtype and number of metastatic sites). Clustering was performed for two, three and four latent classes and the 4-class model was chosen based on optimal AIC. Bars represent the proportion of each factor level within the respective latent class.

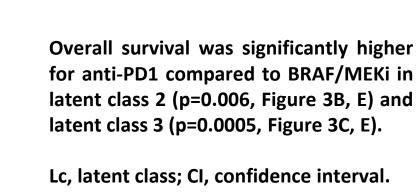


Figure 4: Adjusted overall survival by treatment

Forest plot showing stratified hazard ratios for death according to treatment group. Each stratified variable was fully adjusted for all other variables in a multivariable cox regression model.

		Hazard ratio for	death (95% CI)			
Age	< 70 (N=716)	0.48 (0.337 - 0.68)				<0.001 ***
	70-80 (N=253)	0.84 (0.575 - 1.22)			•	0.36
	> 80 (N=96)	0.78 (0.362 - 1.67)				0.511
ECOG	0 (N=562)	0.52 (0.384 - 0.71)				<0.001 ***
	1 (N=318)	0.67 (0.425 - 1.05)		-	+	0.08
	≥ 2 (N=129)	0.48 (0.185 - 1.23)		•		0.124
Gender	Female (N=439)	0.57 (0.378 - 0.87)		•	- !	0.01 **
	Male (N=626)	0.61 (0.449 - 0.84)		-	-	0.002 **
LDH	Normal (N=548)	0.56 (0.414 - 0.75)		-		<0.001 ***
	Elevated (< 2.5 ULN) (N=261)	0.76 (0.500 - 1.15)			-	0.189
	≥ 2.5 ULN (N=98)	0.41 (0.074 - 2.32)		•		0.309
Stage	Stage III, non-resectable (N=104)	1.17 (0.582 - 2.37)			-	0.646
	Stage IV M1a (N=122)	0.76 (0.394 - 1.46)			- - 	0.402
	Stage IV M1b (N=164)	0.59 (0.326 - 1.07)		-	<u> </u>	0.083
	Stage IV M1c (N=411)	0.64 (0.444 - 0.93)		-	—	0.02 *
	Stage IV M1d (N=264)	0.42 (0.217 - 0.81)	_	•	- :	0.01 **
Metastatic_sites	1 (N=300)	0.82 (0.518 - 1.29)			•	0.38
	2 (N=282)	0.58 (0.397 - 0.86)		-	-	0.007 **
	≥ 3 (N=483)	0.63 (0.423 - 0.95)		-	_	0.027 *
Subtype	Cutaneous (N=896)	0.59 (0.458 - 0.77)		-		<0.001 ***
	MUP (N=169)	0.53 (0.240 - 1.19)	_	•		0.122
Charlson [†]	0 (N=789)	0.52 (0.382 - 0.72)		-		<0.001 ***
	1 (N=110)	1.61 (0.840 - 3.11)			•	0.147
	≥ 2 (N=131)	0.91 (0.490 - 1.70)		<u> </u>	-	0.773

Multivariable cox regression of OS comparing anti-PD1 with BRAF/MEKi with multiple imputation for missing values and addressing baseline imbalances in treatment groups and in the covariates LDH and ECOG.

Anti-PD1 was better for the majority of examined subgroups with the exception of patients with very high levels of LDH (≥2.5 ULN), patients with non-resectable stage III and patients with an ageexcluded Charlson comorbidity score of 1.

N, number of patients; MUP, melanoma with unknown primary; ECOG, Eastern Cooperative Oncology Group; LDH, Lactate dehydrogenase; Stage, American Joint Committee on Cancer V8 clinical stage; CI, confidence interval.

Conclusions

In this study, we present real-world data obtained from a European registry of patients with advanced BRAF V600 mutated melanoma who received BRAFi/MEKi or single agent immunotherapy with anti-PD1 antibodies as a first-line treatment. We found that - overall - single agent anti-PD1 ICI seems superior to upfront BRAF/MEK inhibition as upfront treatment with anti-PD1 resulted in better overall and progression free survival compared to BRAF/MEKi (Figure 1).

This finding needs to be interpreted with caution, since various demographic and clinical variables, including higher age, higher ECOG scores, comorbidities, increased LDH levels, AJCC substage as well as the number of metastatic sites were associated with both, treatment assignment and outcome in this population. Still, these results provide additional support for the use of immunotherapy in first-line, and single agent anti-PD1 might be suffice in patients not eligible for combined ICI.

In conclusion, these results suggest that anti-PD1 single agent may be a valuable option for certain patients with BRAF V600 mutated metastatic melanoma.

Acknowledgements

COI of the presenting author: M.W. reports honoraria from BMS, MSD, Novartis, Takeda and Kyowa Kirin, advisory roles for Roche, Takeda, BMS, and Novartis, Takeda, grants or funds from BMS, Millennium, Roche, Novartis, Takeda, and conference travel support from Amgen, MSD, BMS, Pierre Fabre, Novartis, and Beyersdorf.

Collaborators: Charlotte Aaquist Haslund, Aalborg, Denmark; Ana Arance, Barcelona, Spain; Francisco Aya, Barcelona, Spain; Guy Ben-Betzalel, Ramat-Gan, Israel; Marc Bender, Berlin, Germany; Miguel-Angel Berciano-Guerrero, Málaga, Spain; Pippa Corrie, Cambridge, UK; Danielle K DePalo, Tampa, USA; Eva Ellebæk Steensgaard, Copenhagn, Denmark; Ines Esteves Domingues Pires da Silva, Wollstonecraft, Australia; Ronnie Frommer-Shapira, Ramat-Gan, Israel; Caroline Gaudy-Marqueste, Marseille, France; Ralf Gutzmer, Minden, Germany; John Haanen, Amsterdam, The Netherlands; Davorin Herceg, Zagreb, Croatia; Christoph Höller, Vienna, Austria; Siwen Hu-Lieskovan, Salt Lake City, USA; Douglas Johnson, Nashville, USA; Magdalena Kovacsovi, Salt Lake City, USA; Iwona Lugowska, Warsaw, Poland; Nausicaa Malissen, Marseille, France; Iván Márquez Rodas, Madrid, Spain; Laura Mazilu, Ovidiu, Romania; Janice Mehnert, New York, USA; Peter Mohr, Buxtehude, Germany; Igor Puzanov, New York, USA; Dirk Schadendorf, Essen, Germany; Henrik Schmidt, Aarhus, Denmark; Philipp Schnecko, Gießen, Germany; Gergana Shalamanova, Plovdiv, Bulgaria; Daška Štulhofer Buzina, Zagreb, Croatia; Karijn Suijkerbuijk, Utrecht, The Netherlands; Tamara Sussman, Boston, USA; Inge Marie Svane, Herlev, Denmark; Jochen Utikal, Mannheim, Germany; Sonja B Vliek, Utrecht, The Netherlands; Dimitrios Ziogas, Athens, Greece; Ryan J. Sullivan, Boston, USA; Keith Flaherty, Boston, USA. Correspondence: <u>MWeichenthal@dermatology.uni-kiel.de</u>